
Run Description

Indexing: Documents were indexed using Lucene version 7.1.0 with EnglishAnalyzer and InQuery stop list. We kept three fields per document: title, abstract and content. We performed data augmentation for missing article title or abstract using the article's content (when exists). Title augmentation: first abstract's text paragraph (from json file). Asbtact augmentation: If article's json file contains a longer abstract, then we index it; otherwise we used the one in metadata. If no abstract then we augmented it with either the first 500 chars of the article's introduction/summary/conclusions section (in this preference order), otherwise, if content exists: first 500 chars of the content. Articles with no title or abstract were discarded. Total index size: 50309 docs (#Longer abstract taken: 9099, #Abstracts augmented: 844, #Titles augmented: 38). Retrieval: Retrieval was performed in two main phases (baseline rankers and fusion). The first phase was used to derive an initial pool of potential candidates. Here, the topic's query+question parts were used as the searched query. First baseline retrieval phase used three different rankers: 1. Lucene-based retrieval using 4 Lucene similarities: * AxiomaticF1LOG(default) * DFRSimilarity(BasicModelIF,AfterEffectB,NormalizationH3) * LMDirichletSimilarity(mu=200) * BM25Similarity(default) For each similarity the top-1000 documents were retrieved using a multi-field document retrieval: title^{0.03}, abstract^{0.05}, content¹. Field boosts were tuned using BM25Similarity(default). Various ranked lists were then first fused using CombSUM without score normalization. Following [1] we applied the pseudo-relevance-feedback PoolRank method with CombSUM fusion scores as prior-scores. For pseudo-relevance, we used RM1 [2] with PRF-size=20, Dir-smooth=200, clip size=100 and logistic interplotation (lambda=0.01) tuned using BM25Similarity(default). Following [3] the pool was further reranked using the MaxPsg method (passages were extracted using sliding window of 200 chars with 10% overlap, BM25(K1=0.8,b=0.3) scoring), tuned using BM25Similarity(default). The list of 1000 docs for each query (from the first ranker above), were then re-ranked using the following two fine-tuned BERT models [4]: 2. BERT-Q-a Documents' (title, abstract) pairs were used in the collection as a weak-supervision to fine-tune SciBERT pre-trained model [5] for matching titles to abstracts. Then at run time, given a topic with 1000 docs, document abstracts were scored by matching the topic's question to each abstract using the fine-tuned BERT-Q-a model. 3. BERT-Q-q Similarly, documents' (title, abstract) pairs were used in the collection as a weak-supervision to generate title paraphrases [4]. Those paraphrases were then used to fine-tune another SciBERT model for matching titles to their paraphrases. Then at run time, given a topic with 1000 docs, their titles were scored by matching the topic's question to each title using the fine-tuned BERT-Q-q model. Second fusion phase was applied to combine the three baseline rankers. Following [4], we applied the pseudo-relevance feedback PoolRank method with Weighted CombSUM(weights=[3,2,1],max-min normalization) using again RM1 model (PRF-size=3, Dir-smooth=200, clip size=100 and logistic interplolation (lambda=0.01), tuned using BM25Similarity(default). [1] H. Roitman, Utilizing Pseudo-Relevance Feedback in Fusion-based Retrieval, Proc. of ICTIR'2018 [2] V. Lavrenko, Bruce W. Croft, Relevance-based Language Models, Proc. of SIGIR'2001 [3] H. Roitman, Y. Mass, Utilizing Passages in Fusion-based Document Retrieval, Proc. of ICTIR'2019 [4] Y. Mass, B. Carmeli, H. Roitman, D. Konopnicki, Unsupervised FAQ Retrieval with Question Generation and BERT, to appear in ACL'2020 [5] Iz Beltagy, Kyle Lo, Arman Cohan, SciBERT: A Pretrained Language Model for Scientific Text, CoRR abs/1903.10676 (2019) Second fusion phase was applied to combine the three baseline rankers using Weighted CombSUM(weights=[3,2,1],max-min normalization). [1] H. Roitman, Utilizing Pseudo-Relevance Feedback in Fusion-based Retrieval, Proc. of ICTIR'2018 [2] V. Lavrenko, Bruce W. Croft, Relevance-based Language Models, Proc. of SIGIR'2001 [3] H. Roitman, Y. Mass, Utilizing Passages in Fusion-based Document Retrieval, Proc. of ICTIR'2019 [4] Y. Mass, B. Carmeli, H. Roitman, D. Konopnicki, Unsupervised FAQ Retrieval with Question Generation and BERT, to appear in ACL'2020

Summary Statistics	
Run ID	cogir-ibm-qQ-combs
Topic type	automatic
Contributed to judgment sets?	no

Overall measures	
Number of topics	35
Total number retrieved	35000
Total relevant	3002
Total relevant retrieved	1816
MAP	0.2590
Mean Bpref	0.4222
Mean NDCG@10	0.6131
Mean $RBP(p=0.5)$	0.6456 + 0.0022

Round 2 results — Run cogir-ibm-qQ-combs submitted from CogIR